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in the extensive spot patterns from bent crystals and 
in powder patterns. 

Our arguments have indicated that  the range of 
crystal thickness for which single-crystal structure 
analysis is feasible is not l imited to the range of 
validity of the kinematic theory as defined, for ex- 
ample, by the calculations of Blackman (1939) for 
perfect crystals. If the crystals are perfect, the use of 
our first-order approximation not only allows crystal 
structure analysis to be carried out for crystals of 
greater thickness but provides a technique for the 
unambiguous determination of crystal structures 
which involves, in effect, the determination of the 
relative phases of reflections from series of diffraction 
patterns obtained with different crystal thicknesses or 
accelerating voltages. If the crystals are imperfect, it 
has been shown that  the range of validity of the 
kinematic theory is extended. For both perfect and 
imperfect crystals it seems probable that  the use of 
higher-order approximations, involving the effects of 
Fresnel diffraction within the crystal, may extend the 
range of thickness still further although making the 

mathematical  t reatment  of the diffraction observa- 
tions much more cumbersome and requiring more 
detailed knowledge of crystal thickness and imper- 
fections. 
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The theory of the scattering of electrons by crystals previously developed (Cowley & Moodie, 1957a) 
is applied to determine the nature of the image of a crystal lattice obtained with an ideal electron 
microscope, both in- and out-of-focus. :For very thin crystals the pseudo-kinematic theory is applied, 
and for thick crystals the dynamic theory in a two-beam approximation is used. Intensity anomalies 
and 'stepped' structures in micrographs showing the 90 A superlattice spacing of a form of antigorite 
are explained as arising from simultaneous dynamic scattering of a fundamental lattice reflection 
and kinematic scattering of the superlattice reflection. 

It is shown that dynamic scattering can give rise to variations in the spacing and orientation of 
moir6-1ike fringes appearing in electron microscope images of superimposed crystals. 

1. Introduct ion  

In  recent years a number of observations have been 
made of periodic intensity modulations of electron 
microscope images of thin crystals, the periodicities 
corresponding to the separations of prominent lattice 
planes of the crystals. The crystals concerned include 
metal phthalocyanines, (Menter, 1956a; Neider, 1956; 
Suito & Uyeda, 1957) faujasite (Menter, 1956b) and 
molybdenum trioxide (Bassett & Menter, 1957). The 
periodicities observed for these compounds corre- 
sponded to spacings of less than 20 • and have been 
interpreted as given by interference of the first one 
or two diffracted beams with the transmitted beam, 

probably with changes of the relative phase of the 
interfering beams due to the spherical aberration of 
the objective lens. 

On the other hand, several observations have re- 
cently been made of much larger periodicities, of the 
order of 1 O0 A, in which case it seems likely that  the 
interference of the electron beams corresponding to at 
least the first few diffraction orders should not be 
seriously affected by lens aberrations. Examples 
include periodicities of about 40 and 90 A observed 
in samples of antigorite by Brindley, Comer, Uyeda & 
Zussman (1958). Similarly, for the moir6-1ike fringes 
which appear in the electron microscope images of 
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superimposed crystals when there are slight differences 
in the size or orientation of the unit cell axes (see, 
for example, Mitsuishi, Nagasaki & Uyeda, 1951; 
Dowell, Farrant & Rees, 1954, 1956; Hashimoto & 
Uyeda, 1957; Bassett, Menter & Pashley, 1957; 
Goodman, 1957) when the periodicity is of the order 
of 100 A or greater it can be expected that  the image 
obtained with an electron microscope of high resolu- 
tion is not greatly influenced by aberrations of the 
lenses and does not differ very much from the image 
which would be given by a perfect electron microscope 
except for details on a scale of 20 A or less. 

The question arises to what extent the periodicities 
observed in electron microscope images of crystals can 
be considered as images of the crystal lattice struc- 
ture. Elementary considerations show that it is not 
sufficient to regard the crystal lattice as an amplitude 
object so that  a dark line on the image is interpreted 
as a line of high density. Such an interpretation could 
lead to serious errors in explaining the detailed distri- 
bution of intensity in many of the micrographs which 
have been obtained from antigorite specimens or in 
many of the moir6 fringe patterns which have been 
observed. There is a need, therefore, for an adequate 
theoretical treatment of the electron microscope 
imaging of crystal lattices. 

The existing theoretical descriptions of the formation 
of an electron microscope image, such as those of 
Uyeda (1955) and Haine (1957), are concerned 
principally with the imaging of non-periodic objects 
and do not treat the question of imaging a crystal 
lattice specifically. Although their methods could 
undoubtedly be extended to include the case of crystal 
lattices, we prefer to base our discussion on the general 
theory of Cowley & Moodie (1958) and the theory 
of the scattering of electrons by crystals derived from 
it (Cowley & Moodie, 1957a, 1959), in which the 
necessary basic theoretical results have already been 
obtained. 

A complete treatment of the formation of an electron 
microscope image could be divided into two parts: 
the modification of the incident electron wave by 
transmission through the specimen, and the modifica- 
tion of the resulting amplitude distribution by the 
magnifying lenses. In this paper we consider only the 
first of these two parts, and make the assumption 
that  the lens system gives an image which is identical, 
apart from magnification, with the intensity distribu- 
tion at the exit face of the crystal or in the object 
plane of the objective lens. Our results should thus 
correspond with observations of details in the image 
which are on a larger scale than the limit of resolution 
of the microscope, and so should be directly com- 
parable with observations of the fringes of antigorite 
and moir@ patterns. The results would have to be 
modified to take account of lens aberrations in order 
to give more than a very approximate account of the 
imaging of periodicities of about 20 /~ or less. 

2. Very thin crystals 

When electrons pass through a crystal lattice, the 
relative phases of the different parts of the wave front 
are modified by the non-uniform potential field, giving 
rise to elastic scattering and interference effects. 
Inelastic scattering of the electrons gives rise to a 
decrease in the number of electrons transmitted with- 
out energy loss and also produces a distribution of 
inelastically scattered electrons which have ap- 
preciable energy losses. The contribution of the in- 
elastically scattered electrons to the image depends 
on the chromatic aberrations of the electron lenses 
and the disposition and size of the apertures used. 
For simplicity we ignore this contribution, which has 
been stated to be relatively small (e.g., Haine, 1957), 
and consider only elastically scattered electrons. 

In an earlier publication (Cowley & Moodie, 1957a) 
we showed that the effect of a potential field, 
~(x, y, z), of very small extent in the direction of the 
electron beam, the z-direction, is given by multiplying 
the wave function ~00(x , y) representing the incident 
wave by 

ql(x, y) = exp {i~q~(x, y)-@Z(x, y)}, (1) 
where 

~(x, y) = ~(x, y, z)dz , 
I - - o o  

is a constant equal to 2zcm~/h ~, ;(,(x, y) is a function 
analogous to ~(x, y) for inelastic scattering and @ is 
the appropriate constant. Thus a thin crystal may be 
regarded as a combination of a phase grating and an 
amplitude grating. The intensity distribution at the 
exit face will be given by 

v2(x, y).~f*(x, y) = ql(x, y).q*~ (x, y) 
= e x p  y ) } .  

Thus the contrast in the in-focus image of the lattice 
produced by an ideal electron microscope is due en- 
tirely to the amplitude grating effect arising from 
inelastic scattering. Since the inelastic scattering term 
of (1) is very much less than the elastic scattering 
term, a~(x, y), the in-focus contrast will be small for 
thin crystals; much less than that of a 'phase contrast' 
image. 

It  is well known that some contrast appears when 
a. phase object is defocused. The nature of the out-of- 
focus images of periodic phases objects is discussed in 
detail in another publication (Cowley & Moodie, in 
preparation) in which expressions are derived for the 
intensity distributions of in-focus and out-of-focus 
Fourier images (Cowley & Moodie, 1957b, c, d) for 
objects periodic in one and two dimensions. I t  is 
sufficient to quote here some of the results for the one- 
dimensional case. 

We assume that a plane wave is incident on a phase 
grating, the effect of which on the wave is given by 
multiplying by q l ( x ) =  exp {ia~(x)}, where ~(x)--  
ZhE~ cos 2zehx/a has periodicity, a. 
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The deviation from focus is measured by a para- 
meter given by v = R2/2a e, where R is the distance 
of the plane of observation from the grating. Then 

= ½ corresponds to the plane of the first Fourier 
image, which is an exact reproduction of the object 
so tha t  the contrast in the image at this plane is zero. 

If v = 1 the intensity distribution is given by 

I¼(x) = 1+sin 2a~0(x ) , 
where 

~00(x) = 2J E~ cos 2~hx/a, 
h odd 

i.e., ~0(x) is obtained by putt ing all the even-numbered 
Fourier coefficients of q~(x) equal to zero. 

If ~ is very small, the intensity distribution is given 
by 

aev deq)(x) 
I~(x) = 1 + - -  

:Tr, dx 2 

of the Ewald sphere from the reciprocal lattice point 
denoted by h and H is the crystal thickness. 

Start ing from the same general equation and con- 
sidering only contributions to the amplitude in the 
incident beam direction it is possible to derive in the 
same way the expression for the pr imary beam as 

U 0 = [cos w H -  i ( :~Jw) sin will 
x exp {i(~HEo-~HGo+zi~aH } . (3) 

The intensity distribution at the exit face of the crystal 
is then given by 

Other values of v give more complicated expressions 
for the intensity. 

I t  thus appears that,  while the contrast due to 
elastic scattering from a crystal may  be large when the 
electron microscope is defocused, the image produced 
is not a direct representation of the projected potential 
distribution, ~0(x, y), but may  be calculated from the 
potential distribution if the defect of focus is known. 
Most of the electron micrographs showing the perio- 
dicity of a crystal lattice have been taken out of focus 
in order to increase the contrast of the fringes. Since 
the defect of focus is usually unknown it is not possible 
to relate the observed image to the crystal structures. 

3. Th i ck  c rys t a l s :  the t w o - b e a m  case 

For crystal thicknesses in excess of a few hundred/~,  
the approximations of paragraph 2 above are no longer 
valid. The higher approximations described in an 
earlier paper (Cowley & Moodie, 1957a) may be 
applied for limited thickness ranges. One immediate 
result is tha t  approximations beyond the first-order 
introduce amplitude as well as phase modulation due 
to pure elastic scattering. 

No general solution to the problem of scattering 
from an arbitrarily thick crystal has yet  been obtained, 
except in principle. We therefore make the usual 
assumption that  there are only two strong beams in 
the crystal, the incident and one diffracted beam. 
This is sometimes a good approximation for thick 
perfect crystals, suitably oriented. Cowley & Moodie 
(1957a) derived the expression for the amplitude of 
the diffracted beam for this case, in the form 

Ua = iFh ((sin wH)/w) exp { iaHEo-OHGo-~i~hH},  
(2) 

where w = (ze~+-FhFT,)~, Fh being the complex struc- 
ture factor given by Fh = (IE~+ioG~, ~h is the ex- 
citation error, or the distance in the beam direction 

v2~o* = I Uo + Uh exp {-2xihx/a}12 

=1 2sinwH{ } 
w ~ G~ cos wH + ...... aEh sin wH 

w 

xsin 2z(h--Xa -$~H ) 

)+ . . . .  cos e wH + sin e wH 
w w ~ -  

x cos 2~ ( ~ - - ~ h H - - ~ )  , (4) 

where 
JaEh cos w H -  (~ /w)~Gh  sin wH} 

2~o¢ = tan -1 I QGh cos wH + (7~h/W) (rEh sin w)r/ ' 

The image therefore consists of a set of cosine fringes 
for which both the amplitude of modulation, or con- 
trast,  and the phase depend in a complicated way on 
the modulus of the structure factor, [F~I, the excita- 
tion error, ~a, and the crystal thickness, H. 

When the crystal is set exactly at the Bragg angle, 
i.e., ~h = 0, equation (4) reduces to 

~p~f*= 1 - s i n 2 ] F h l H . c o s 2 7 ~ ( - ~ - @ .  (5) 

where 2za  = tan -1 (aEa)/(QG~). (Since ~Gh < ~Eh, 
c¢ is nearly equal to ~/2). The contrast of the fringes 
therefore varies with the crystal thickness. If the 
crystal thickness varies, the intensity modulation goes 
to zero and changes sign for 2[F~[H = nzr, n being an 
integer. The image of a wedge-shaped crystal giving 
a strong reflection from planes parallel to the plane of 
the wedge angle, would have the appearance indicated 
in Fig. 1, with a shift of a/2 in the fringes at each 
position of zero contrast. If the Bragg condition is 
not exactly satisfied, i.e., ~h • 0, the appearance of 
the fringes will be similar but with different intervals 
between the positions of zero contrast. 

To illustrate the dependence on excitation error, the 
contrast and phase of the fringes given by (4) are 

A C 12 25 
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Fig. 1. The  var ia t ion  in in tens i ty  d is t r ibut ions  of fringes 
cor responding  to a c rys ta l  la t t ice  spacing with va ry ing  
c rys ta l  thickness ,  H .  

plotted against excitation error for representative 
cases in Figs. 2(a) and (b). The values chosen are" 
H = 200/~, [FhlH = ~/3 for Fig. 2(a) and IFh]H = re~2 
for Fig. 2(b). 

• ,, ,, Ampl. l 

",, / ' , .  
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Fig. 2. The var ia t ion  of con t ras t  and  phase  angle of fringes 
given b y  a crys ta l  of th ickness  200z  A wi th  F h H  = ~/3 
for 2(a) and F h H  = ~/2 for 2(b), as a funct ion  of exc i ta t ion  
error ~. 

For a crystal which is uniformly bent, so tha t  ~h 
varies linearly with distance in the direction per- 
pendicular to the axis of bending, Figs. 2(a) and (b) 
represent the distribution of contrast and phase of 
the fringes in the image. I t  is seen that  the contrast 
decreases from the centre (the centre of the 'extinction 
contour' for a non-resolved lattice) through a series 
of maxima and zeros. At each position of zero contrast 
the phase jumps by ~ so that ,  unless the axis of 
bending is parallel to the reflecting plane, the fringe 
pat tern will have the stepped structure of Fig. 1 with 
an apparent  displacement of a/2 at each position of 
zero contrast. 

The slopes of the curves for the phase angle a 

between discontinuities in Figs. 2(a) and (b) represent 
continuous phase changes which would have the effect 
of making the fringes in the image not quite parallel 
to the lattice planes. However the additional phase 
term ShH in (4) has a similar but  oppositely directed 
effect so that  the fringes are in fact very nearly parallel 
to the lattice planes. 

The effect of defocusing of the ideal electron 
microscope, which we assume is used to magnify the 
image formed at  the exit face of the crystal, would be 
to add an additional constant phase factor in equation 
(4). This would displace all fl'inges by an equal amount 
and so would not effect the appearance of the image. 

The case of dynamic scattering in a crystal of 
arbitrary thickness when two or more diffracted 
beams have appreciable intensity will not be treated 
here. From the calculations of Heidenreich (1950) and 
Hoerni (1956) it can be deduced that  the periodicity 
of the modulation of the image will remain the same 
as tha t  of the lattice, but the relative phases and 
amplitudes of the Fourier coefficients corresponding 
to the various diffracted beams will vary widely with 
crystal thickness and excitation error. The resulting 
image will in general have no recognizable relationship 
with the lattice structure. 

Further,  if the ideal electron microscope is de- 
focused, the relative phases of the Fourier coefficients 
will be further changed since the phase shifts as- 
sociated with defocusing depend on the spacing of 
the lattice planes concerned. An impression of the 
nature of this modification of the image can be ob- 
tained from the discussion of out-of-focus Fourier 
images by Cowley & Moodie (1957c). 

4. Interpretation of electron m i c r o g r a p h  
observat ions  on antigorite  

Antigorite is a serpentine mineral having a superlattiee 
unit cell with an a-axis usually of about 40 •, i.e., 
about eight times the a-axis of the other serpentines. 
In an electron diffraction study of serpentine minerals, 
Zussman, Brindley & Comer (1957) found a-axes of 
90 and 109 }t for a variety of antigorite known as 
Yu Yen Stone. Subsequently Brindley, Comer, Uyeda 
& Zussman (1958) reported the appearance of fringes 
corresponding to the 90 A spacing in electron micro- 
graphs of lamellar crystals of this material. Uyeda, 
Masuda, Tochigi, Ito & Yotsumoto (1958) made 
further electron microscope observations and pub- 
lished several interesting mierographs. A similar micro- 
graph, taken by Dr Ito, is reproduced in Fig. 3. In 
these the following features may be observed: 

[1] The fringes vary in appearance, being sometimes 
sharp, sometimes broad, sometimes doubled and 
sometimes having weak subsidiary fringes. 

[2] Dark bands with the appearance of extinction 
contours traverse the crystals. Near these the 
contrast of the fringes increases, and the fringe 
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Fig. 3. Electron micrograph of an antigorite crystal showing the details of the behaviour of fringes due to 
the 90 A superlattice reflection. (Taken by Dr K.  Ire ,  and reproduced with his kind permission). 

Fig. 6. Electron micrograph of crossed molybdenum oxide crystals showing the interaction of 
moire-like fringes with extinction contours. (After Dowell, Far ran t  & Rees, 1954). 

[To face p. 370 
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pattern has a 'stepped' appearance with an 
apparent phase difference of = between the 
fringes on either side of a band. 

[3] The dark bands, and the associated stepped pat- 
tern have been observed to move relative to the 
crystal boundaries between observations. 

[4] Other, more complicated effects are sometimes 
visible in limited regions of the crystal image. 

These features, except for [3], can be seen in Fig. 3. 
If the appearance of the fringes is regarded as arising 
from dynamic scattering of the superlattice reflections, 
the varied appearance of the fringes as described in 
[1] may result from differences in thickness or in 
amount of defocus giving differences in the relative 
phases of the several dynamically scattered beams, 
as described at the end of section 3 above. Then 
localized changes in thickness by amounts of the order 
of 2tFh]H would result in the stepped structures 
described in [2]. An explanation in these terms has 
been proposed by Hashimoto (private communica- 
tion). This explanation would be satisfactory if 
evidence could be obtained that  (a) the ]Fa] for the 
superlattice reflections are large enough to produce 
dynamic scattering in the observed crystal thicknesses, 
(b) local thickness "variations of sufficient magnitude 
occur, and (c) the observation [3] above is illusory. 

The value of IF~[ for the strongest fundamental 
reflections for antigorite is probably such as to make 
2]Fa]H = ~ for a value of H equal to several hundred 
~. If this antigorite has a superlattice similar to that  
found by Kunze (1958), it seems highly probable 
that  the structure factor for the superlattice reflections 
would be very much less than that  of the fundamental 
reflections, so that  thicknesses of thousands of /~ 
would be required to produce dynamic effects. 

An alternative explanation of the antigorite fringe 
observations is possible on the assumption that  the 
superlattice reflections are kinematic, but that  dy- 
namic scattering of the fundamental reflections is 
taking place and giving rise to the extinction contours 
observed in the micrographs as dark bands. 

We assume that  a strong reflection, with structure 
factor Fe and excitation error ~e, occurs, but is inter- 
cepted by an aperture in the system and does not 
contribute to the image directly but modulates the 
primary beam, U 0, according to equation (3) with h 
replaced by g. The superlattice reflection Ua, with 
very small structure factor Fa and excitation error 
assumed to be very small, receives contributions from 
each part of the crystal proportional to the amplitude 
of the primary beam at that  part. Thus the contribu- 
tion to the superlattice reflection from a layer of 
thickness AIz at a distance z from the entrance face of 
the crystal is given by 

U~(z) = exp ( iHFo). iAzFa 
× [cos wz-- i(x~g/w) sin wz] exp {zi~gz}, 

where 

w = 

Then the total amplitude of the superlattice reflection 
is 

U ~ = f ~ U ~ ( z ) d z  

Fh [ 2 ~ g - -  {2~g  cos wH = exp (iHFo) ~ 

If we consider the image to be formed by the primary 
beam and the superlattice reflections with indices h 
and h, the intensity distribution on the image will be 
given by 

yj~* -- ]U0÷2Uh cos (27ehx/a)[ 2 

= 1 - (F~/w 2) sin ~" wH FgF-~ 2 -  w2 

-2(c°sze~gHc°swH+Zl~gsin~gHsinwH)]w 

2 7~ hx 
× c o s -  (7) 

6~ 

Here the inelastic scattering contribution aGh has 
been ignored and terms of the second order of the 
quantity aEh, assumed to be very small, have been 
omitted. 

Equation (7) represents a set of cosine fringes for 
which both the contrast and background depend on 
the structure factor and excitation error of the 
fundamental reflection. For a bent crystal the position 
for which ~g = 0 will be the centre of an extinction 
contour, which may take the form of a dark band 
or a set of dark bands. Since the contrast in the image 
given by (7) is an odd function of ~g there will be a 
change in sign of the contrast and hence a stepped 
structure with a displacement of the fringes by a/2 
at the position Sg = 0. 

Intensity distributions have been calculated for two 
representative cases and are shown in Figs. 4(a) and 
(b), with contours of equal intensity plotted for 
variations in the coordinate x and the excitation error 
~g, which is assumed to vary linearly perpendicular 
to the x coordinate as a result of a uniform bend in 
the crystal. The scale of ~g is such as to correspond to 
a bending about a very much smaller radius of 
curvature than would be encountered in practice. The 
diagrams should therefore be elongated horizontally 
by a very large factor for comparison with the electron 
microgr~ph observations. :For :Fig. 4(a), H = 200~ ~,  
HFa = 0"15 and HFg = 7~/2, so that  the intensity a t  
the centre of the extinction contour is zero. For  
Fig. 4(b), H = 200z A, HFh = 0.15 and IiFg = z, so 
that  the centre of the extinction contour has maximum 
intensity with a dark band on either side of it. 

In each case the reversal of contrast, or stepped 

25* 
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Fig.  4. C a l c u l a t e d  i n t e n s i t y  d i s t r i b u t i o n s  for  t he  an t i go r i t e  
s u p e r l a t t i c e  f r inges  for  a b e n t  c rys ta l ,  in the  n e i g h b o u r h o o d  
of  an  e x t i n c t i o n  c o n t o u r  d u e  to  d y n a m i c  s c a t t e r i n g  of a 
f u n d a m e n t a l  re f lec t ion .  F o r  4(a) ,  FgH = g /2  a n d  for  4(b) 
F o i l  ~-- ~.  Crys t a l  t h i ckness  is H = 2 0 0 ~ / ~ .  

appearance,  can be seen about  the ~ = 0 position. 
The contrast  of the fringes is greatest near the ex- 
t inct ion contour, and decreases very slowly as ~g 
increases. I t  seems probable tha t  in most cases the 
values of Sg for which the contrast  becomes negligibly 
small wiU be greater than th0~o required to make 
another  neighbouring fundamenta l  reflection opera- 
tive. Hence the contrast  of the fringes m a y  be ap- 
preciable over large areas of the crystal even though 
the superlatt ice reflections are kinemat ic  and would 
give no contrast in the absence of any  fundamenta l  
reflections. 

The principal  features of the antigorite pat terns  have 
thus been satisfactorily explained. The motion of 
extinction contours and stepped structures between 
exposures, ment ioned in i tem [3] above, can be ex- 
plained in terms of slight changes in the bending or 
orientat ion of the crystals due to heat ing or electro- 
static charging by the electron beam. Some of the more 
detai led features of the images of the fringes, such as 
She wried ~ppe~r~nce of the fringes mentioned under 
[1], and the changes in appearance as fringes cross the 
ext inct ion contours m a y  also be explained if one takes 
into account the fact tha t  most of the micrographs 
have  been taken out of focus in order to increase the 
contrast. 

According to Cowley & Moodie (1958, 1957c), the 
wave funct ion in a plane at  a distance R from the 
exit  face of the crystal  is given by 

~R(z) = W0(x).  exp {-ikx~/2R}. 

The off-focus distance m a y  be expressed in terms of 

~, = R2/2a e, as in section 2 above. Then the in tens i ty  
dis t r ibut ion of the out-of-focus image is 

FgF-~ 4~$~aEa 2~hx 
%0y~* = 1 -  w~- sin ewH FgF~  c O S - - a  

x 2 - - ~ f f  s inewH-2 c o s w H . c o s ~ ' g H  

+ - -  sin wH.s in  ~$gH cos 2~vh e 
W 

JFgFF ( 
+ [~gw sin 2wH-2  cos wH.s in  ~ g H  

gSg sin wH. C O S w  ~ g  H)}  sin 2~vh2].~ (8) 

I t  is readi ly verified tha t  for v = 0, (8) reduces to 
(7). For ~ = ¼, which corresponds to m a x i m u m  con- 
t ras t  in the kinemat ic  case, the first te rm in the square 
bracket  vanishes, and the contrast  becomes an even 
function of Sg so tha t  no phase reversal, or stepped 
appearance, occurs at the extinction contours. This is 
shown in the in tens i ty  plot of Fig. 5(a). However 

= ~ corresponds to a larger defocusing (about 8# 
for a 90 /~ spacing) than  would normal ly  be used. If, 
for example, we take ~ = 0.036 so tha t  cos 2~v = 
(9/2) sin 2 ~ ,  and consider the si tuation corresponding 
to Fig. 4(a), namely  with H = 200~ A, HF~ = ~/2 
and HFh = 0-10, the resul tant  in tens i ty  dis t r ibut ion 
is as shown in Fig. 5(b). The effect is that  of adding 

I 
- 5  0 

(a) 

I 
- 5  0 

(b) 

~---~ ~x103 I I 
5 10 

C" 

~z ~ ' - ~  3 5 1'0 

Fig .  5. C a l c u l a t e d  ou t -o f - focus  i n t e n s i t y  d i s t r i b u t i o n s  corre-  
s p o n d i n g  to  Fig .  4(a),  w i th  v = ~ for  5(a) a n d  ~, ---- 0 .036 
for  5(b). 

a fraction of the distr ibut ion of 5(a) to tha t  of 4(a). 
The contrast of the fringes on the lef t -hand side has  
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been increased. On the right-hand side the contrast 
is at  first decreased and then, with increasing $~, is 
reversed. There is thus the appearance of a double 
phase reversal. Both the change in contrast across an 
extinction contour and the double-stepped appearance 
can be seen in several parts of Fig. 3. 

A more complete account of some of the details of 
Fig. 3 can be given if we take into account the pos- 
sibility tha t  more than one pair of superlattice reflec- 
tions contributes to the image. The equation (8) 
then takes the form 

FgF~ 
~fyJ* = 1 -- ~ sin s w H  

F~F~ 
2zhx  

÷ { . . .  } sin 2~rvh s] c o s -  
a 

There is thus, for each value of h, a set of fringes 
which may vary  in form, from that  of an even func- 
tion, as in Fig. 5(a), to tha t  of an odd function, as in 
Fig. 4(a), depending on the values of h, v, H and Ft.  
Thus the Fourier coefficients of the fringe profile may  
vary  in amplitude and phase from one side of the 
extinction contour to the other, giving differences in 
fringe appearance on the two sides, and there may be 
one, two, or no phase reversals. Fig. 3 contains ex- 
amples of a number of the many possible combina- 
tions of predicted features. 

In conclusion it may  be stated that ,  in the presence 
of dynamic diffractions by lattice planes not contribut- 
ing to the image, images may be produced by kinematic 
reflections which, by definition, are too weak to give 
appreciable contrast. The contrast of the fringes 
produced may vary widely, the fringes may appear 
sharp, diffuse or split into several components, and, 
at the extinction contours visible in images of bent 
crystals, the fringes may pass through one or more 
phase-reversing steps. I t  is to be expected tha t  similar 
considerations will apply, with an even greater variety 
of possible results, if two-dimensionally periodic pat- 
terns of fringes are considered or if the possibility of 
dynamic scattering by the planes which are imaged 
is entertained. Considerable care must therefore be 
exercised in the interpretation of fringes appearing in 
the images of crystals in terms of crystal lattice struc- 
ture. 

5. Moir6-1ike p a t t e r n s  f r o m  thick crystals 

The successive scattering of electrons by two thin 
crystals separated by an arbitrary distance has been 
treated in detail in another publication (Cowley & 
Moodie, to be published) on the assumption tha t  the 
scattering is kinematic. I t  was shown that,  when 
certain relationships are satisfied between the dimen- 
sions and orientations of the projected potential 
distributions ~1 (x, y) and ~s(x, y) and the separation 

of the two crystals, it is possible to obtain a periodic 
modulation of the intensity of the image with a 
periodicity very much greater than tha t  of either 
crystal lattice. The intensity distribution is then given 
by 

~ ' E , ( h , k ) E s ( - h , - k )  exp 2zd (-~ + ~-~ y] 
h k \21 .0/  

= q~, , * ~s M '  ' 

where A and B are the axes of the magnified unit cell 
and M is the magnification. If the two crystals are 
identical, this reduces to the Patterson function for the 
crystal projection. 

The results obtained in section 3 above allow us to 
extend these results to the case where the scattering 
in the individual crystals is dynamic. Since we con- 
sider dynamic scattering for the two-beam case only, 
we deal with sets of parallel fringes with periodicity 
in one direction only and so can confine our t rea tment  
to one dimension. 

In the relevant direction we consider the periodicities 
of the two crystals to be a, and a2, the structure factors 
are E, and E s (ignoring inelastic scattering contribu- 
tions), the excitation errors are $~ and $2 and the 
crystal thicknesses are H~ and H 2. 

The wave incident on the second crystal is tha t  a t  
the exit face of the first crystal, namely 

YJ1 (x) = U0 + U~ exp (2sihx/a 1) . 

Applying our previous methods to calculate the 
scattering in the second crystal, it can be assumed tha t  
each term of the series which are summed to give 
U0' and U~[ is therefore multiplied by v A (x) instead of 
yJo(X) = 1. At the exit face of the second crystal the 
intensity distribution is therefore given by 

~vv2* = l{U0+ U~ exp (2sihx/a~)} 
{u'0'+ u~' exp (-2~ihx/as))l s. (9) 

The sign of h has been changed for the second crystal 
since we must assume a reflection opposite to tha t  of 
the first crystal in order to get a diffracted beam close 
to the primary beam. Evaluation of (9) gives 

v2~v* C~C~+ 4 2 _2sinSwlHl.sin2wsH2 
= a EhEh -- w~ w 2 

sin w 1H1. sin wsH 2 
-2aSEhE~CIC2 . . . . .  

w; w s 

× cos 2~ (h---x-~H~-~'2Hs+/~l +f12), (10) 

where 
C, = {cos 2 wlH , ÷ (~2~2/w~) sin e wlH,}½ 

and 

2 ~  = tan -1 (! 2~1wl tan wIHl}  = -27~ -2~v¢~ 

and similarly for C 2 and fie, and (l/A) = ( l /a1) -  (1/as) , 
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A being the periodicity of the moirg-like fringes. In 
the derivation of (10), terms involving exp {2~ix/al} 
and exp {2zix/a2} have been omitted since these 
correspond to the unresolved spacings of the individual 
crystals. 

Hence the background intensity, the contrast and 
the phase of the moir6-like fringes vary widely with 
the structure factors, crystal thicknesses and excita- 
tion errors for the two crystals. A clearer impression 
of the nature of the variations to be expected can be 
obtained by considering some special cases. For 
example, if the crystals can be assumed parallel we 
may  take $~ = -~1 = ~. If one of the crystals, say 
the second, is very thin, we may take cos w H  2 = 1, 
sin w H  2 ~ wH~.. Then if we neglect terms in Ho 2 
equation (10) reduces to 

~vv/* = C~-  2H~a~'EhE~C1 sin z v 1H~ 
?.01 

This equation is similar to the equation (4) for a single 
dynamic crystal, IFhI being replaced by H~o'9E~E~, 
the constant background being replaced by 6'~ which 
depends on ~'1, N~ and H1, and the phase angle ~x 
being replaced by ~1 = ¼-~x. The moire-like fringes 
will therefore have much the same appearance as the 
fringes given by a single dynamically scattering crystal 
as described in section (3) above and illustrated in 
Fig. 2. 

One noticeable difference between the two cases is 
that,  whereas in equation (4:) the phase contributions 
~'H and ~ very nearly cancelled out except for the 
discontinuities of ~ at the zero contrast positions, 
in equation (11) the contributions ~H 1 and/~1 modify 
the phase in the same direction as ~ changes. Because 
of the relatively large spacing of the moir6-1ike fringes 
it is possible that  moderate bending of the crystal 
may  introduce appreciable fringe displacements within 
distances comparable with the fringe periodicity. If 
the axis of bending is perpendicular to the fringes the 
phase variation will result in lateral displacement of 
the fringes giving them a slightly wavy appearance 
and changing their orientation with respect to the 
crystal lattices by small amounts. If the axis of bending 
is parallel to the fringes, the effect will be to make the 
spacing bet~ween the fringes vary. 

These effects may be observed in Fig. 6 which is a 
reproduction of a micrograph published by Dowell, 
Farrant  & Rees (1956) showing moir6-1ike fringes 
given by crossed crystals of molybdenum oxide. One 
of the crystals appears to be very thin since the 
extinction contours are very weak. The appearance 
and curvature of the extinction contours in the other 
crystal and in the common region indicates consider- 
able bending. The three strong sets of moirg fringes, 
two parallel to the crystal edges and one diagonal, 
correspond to various pairs of strongly reflecting 

lattice planes. Careful inspection reveals that  the 
fringes are appreciably deflected when crossed by 
extinction contours not parallel to them. The angle 
made by the fringes with the edges of the thinner 
crystal is also seen to vary. 

A further interesting effect may be seen along the 
edges of the thicker (more heavily contoured) crystal. 
Near these edges the extinction contours, and hence 
the axis of bending, run parallel to the fringes. Hence 
one might expect an expansion or contraction of the 
fringe spacing. This effect, as can be seen from equa- 
tions (10) and (11), should depend on the crystal 
thickness. Along the crystal edges there appears to be 
a very narrow strip of crystal of reduced thickness. 
Here it can be seen tha t  the fringe spacing is reduced, 
giving the impression of one extra fringe per extinction 
band, and thus a false impression of the occurrence of 
edge dislocations at  the crystal edges. Detailed calcula- 
tions relative to this case have not been made in the 
absence of data on crystal thickness or curvatures. 
Approximate calculations however indicate tha t  effects 
of the observed magnitude are predicted by equation 
(11). For example, a phase shift of 2~, or the displace- 
ment of fringes by a distance equal to the fringe spac- 
ing, takes place when the orientation of the lattice 
changes by 0.005 radians if the crystal thickness is 
500 /~ and the d-spacing of the contributing planes is 
5 /~. There is therefore one extra or one less fringe in 
a distance of 0.1u for a radius of curvature of 20/~. 

From these limited considerations it is evident that ,  
as in the case of the imaging of the lattices of individual 
crystals, extreme care is required in the interpretation 
of the appearance of the moir6-1ike fringes produced 
by overlapping crystals, especially if there is any  
evidence of dynamic scattering, such as the occurrence 
of extinction contours, or if the electron microscope 
is not focuse:I exactly on the exit face of the crystals. 
Dynamic scattering effects may introduce displace- 
ments or distortions of the fringes, variations in con- 
trast  and in the intensity distributions across the 
fringes, stepped structures and changes in the fringe 
periodicity. Defect of focus may modify the pat tern 
of fringes further and it is to be expected tha t  the 
effect of lens defects, which hag not been considerecl 
here, would be to add further complications. 
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Equi-Inclination Weissenbert~ Intensity Correction Factors for Absorption in 
Spheres and Cylinders, and for Crystal Monochromatized Radiation 
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Increased precision of intensity measurements through the use of counting methods calls for more 
careful corrections. A new absorption correction table is presented for cylinders with ~R running 
from 0 to 8 by tenths and on to 20 by units; also a table for spheres, /~R running from 0 to 10 by 
tenths. In both tables 0 runs from 0 ° to 90 ° in 5 ° steps. For cylinders, the correction factor for upper 
levels is gotten by entering the table with/~R sec v in place of/~R and / ' / 2  in place of 0, then multiply 
this value by cos v. Tables are also given of the power series coefficients to be used in expanding 
absorption factors for very large cylinders. A combined polarization Lorentz correction factor is 
presented for the case of crystal monochromatized radiation. 

I n t r o d u c t i o n  

I n  recent  years, there has been increasing emphasis 
on obtaining highly  accurate s t ructure  ampli tudes 
from single crystal  X-ray  data.  In  the course of work 
in these Laboratories  on a single crystal  au tomat ic  
diffractometer  (Bond, 1955; Benedict,  1955), several 
problems arose with regard to the  conversion of inten- 
sities to s t ructure  ampli tudes.  These involved:  (1) 
A Lorentz-polar izat ion correction for monochro- 
matized radia t ion;  (2) expanding and improving the 
absorpt ion tables for cylindrical  and spherical crystals;  
and (3) deriving the  method  for absorpt ion correction 
of upper  level equi- incl inat ion Weissenberg intensities. 
In  part icular ,  the  la t te r  has, as far as can be ascer- 
tained,  been ignored. I t  is ra ther  difficult to see how 

even for very  small crystals containing l ight atoms, 
one can claim great  accuracy (some claim~ have bgen 
3%) for F ' s  obtainecI say from layers with v ~ 3 0  ° 
when such proper correction has not  been made. As 
an example for #R  = 1, # = 20 °, :F = 10 ° the  absorp- 
t ion correction is 5.09 not  4.80 as is go t ten  from 
#R -- 1, t rue 0 = 20"6 ° . 

A b s o r p t i o n  c o r r e c t i o n  t a b l e s  

Consider scat tering from a very  small element of 
volume A V ba thed  in a uniform monochromat ic  
coll imated beam of X-rays.  Let  the  beam be of in- 
tens i ty  I wat ts  cm. -2 and  let the  scat ter ing power in a 
direction parallel to  a vector  r be Qr wat ts  per cm. a 


